模型:
yiyanghkust/finbert-esg
ESG分析可帮助投资者确定企业的长期可持续性并识别相关风险。 FinBERT-ESG是通过对公司的ESG报告和年度报告中的2,000个手动注释句子对FinBERT模型进行微调而得到的。
输入:金融文本。
输出:环境,社会,治理或无。
您可以使用这个模型和Transformers pipeline进行ESG分类。
# tested in transformers==4.18.0 from transformers import BertTokenizer, BertForSequenceClassification, pipeline finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-esg',num_labels=4) tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-esg') nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer) results = nlp('Rhonda has been volunteering for several years for a variety of charitable community programs.') print(results) # [{'label': 'Social', 'score': 0.9906041026115417}]
请访问 FinBERT.AI 以了解FinBERT的最新发展详情。
如果您在学术工作中使用该模型,请引用以下论文:
Huang, Allen H., Hui Wang, and Yi Yang. "FinBERT: A Large Language Model for Extracting Information from Financial Text." Contemporary Accounting Research (2022).