模型:
ydshieh/vit-gpt2-coco-en
The model is by no means a state-of-the-art model, but nevertheless produces reasonable image captioning results. It was mainly fine-tuned as a proof-of-concept for the ? FlaxVisionEncoderDecoder Framework.
The model can be used as follows:
In PyTorch
import torch import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = VisionEncoderDecoderModel.from_pretrained(loc) model.eval() def predict(image): pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values with torch.no_grad(): output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat']
In Flax
import jax import requests from PIL import Image from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel loc = "ydshieh/vit-gpt2-coco-en" feature_extractor = ViTFeatureExtractor.from_pretrained(loc) tokenizer = AutoTokenizer.from_pretrained(loc) model = FlaxVisionEncoderDecoderModel.from_pretrained(loc) gen_kwargs = {"max_length": 16, "num_beams": 4} # This takes sometime when compiling the first time, but the subsequent inference will be much faster @jax.jit def generate(pixel_values): output_ids = model.generate(pixel_values, **gen_kwargs).sequences return output_ids def predict(image): pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values output_ids = generate(pixel_values) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds # We will verify our results on an image of cute cats url = "http://images.cocodataset.org/val2017/000000039769.jpg" with Image.open(requests.get(url, stream=True).raw) as image: preds = predict(image) print(preds) # should produce # ['a cat laying on top of a couch next to another cat']