模型:
voidful/dpr-ctx_encoder-bert-base-multilingual
Multilingual DPR Model base on bert-base-multilingual-cased. DPR model DPR repo
question pairs for train : 644,217 question pairs for dev : 73,710
*DRCD and MLQA are converted using script from haystack squad_to_dpr.py
I use the script from haystack
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer tokenizer = DPRContextEncoderTokenizer.from_pretrained('voidful/dpr-ctx_encoder-bert-base-multilingual') model = DPRContextEncoder.from_pretrained('voidful/dpr-ctx_encoder-bert-base-multilingual') input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='pt')["input_ids"] embeddings = model(input_ids).pooler_output
Follow the tutorial from haystack : Better Retrievers via "Dense Passage Retrieval"
from haystack.retriever.dense import DensePassageRetriever retriever = DensePassageRetriever(document_store=document_store, query_embedding_model="voidful/dpr-question_encoder-bert-base-multilingual", passage_embedding_model="voidful/dpr-ctx_encoder-bert-base-multilingual", max_seq_len_query=64, max_seq_len_passage=256, batch_size=16, use_gpu=True, embed_title=True, use_fast_tokenizers=True)