模型:
uer/t5-small-chinese-cluecorpussmall
This is the set of Chinese T5 models pre-trained by UER-py , which is introduced in this paper .
The Text-to-Text Transfer Transformer (T5) leverages a unified text-to-text format and attains state-of-the-art results on a wide variety of English-language NLP tasks. Following their work, we released a series of Chinese T5 models.
You can download the set of Chinese T5 models either from the UER-py Modelzoo page , or via HuggingFace from the links below:
Link | |
---|---|
T5-Small | L=6/H=512 (Small) |
T5-Base | L=12/H=768 (Base) |
In T5, spans of the input sequence are masked by so-called sentinel token. Each sentinel token represents a unique mask token for the input sequence and should start with <extra_id_0> , <extra_id_1> , … up to <extra_id_99> . However, <extra_id_xxx> is separated into multiple parts in Huggingface's Hosted inference API. Therefore, we replace <extra_id_xxx> with extraxxx in vocabulary and BertTokenizer regards extraxxx as one sentinel token.
You can use this model directly with a pipeline for text2text generation (take the case of T5-Small):
>>> from transformers import BertTokenizer, T5ForConditionalGeneration, Text2TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> model = T5ForConditionalGeneration.from_pretrained("uer/t5-small-chinese-cluecorpussmall") >>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer) >>> text2text_generator("中国的首都是extra0京", max_length=50, do_sample=False) [{'generated_text': 'extra0 北 extra1 extra2 extra3 extra4 extra5'}]
CLUECorpusSmall is used as training data.
The model is pre-trained by UER-py on Tencent Cloud . We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
Taking the case of T5-Small
Stage1:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --processes_num 32 --seq_length 128 \ --dynamic_masking --data_processor t5
python3 pretrain.py --dataset_path cluecorpussmall_t5_seq128_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq128_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \ --learning_rate 1e-3 --batch_size 64 \ --span_masking --span_geo_prob 0.3 --span_max_length 5
Stage2:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --dataset_path cluecorpussmall_t5_small_seq512_dataset.pt \ --processes_num 32 --seq_length 512 \ --dynamic_masking --data_processor t5
python3 pretrain.py --dataset_path cluecorpussmall_t5_seq512_dataset.pt \ --vocab_path models/google_zh_with_sentinel_vocab.txt \ --pretrained_model_path models/cluecorpussmall_t5_small_seq128_model.bin-1000000 \ --config_path models/t5/small_config.json \ --output_model_path models/cluecorpussmall_t5_small_seq512_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \ --learning_rate 5e-4 --batch_size 16 \ --span_masking --span_geo_prob 0.3 --span_max_length 5
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_t5_from_uer_to_huggingface.py --input_model_path cluecorpussmall_t5_small_seq512_model.bin-250000 \ --output_model_path pytorch_model.bin \ --layers_num 6 \ --type t5
@article{2020t5, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, journal = {Journal of Machine Learning Research}, pages = {1-67}, year = {2020} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }