模型:
uer/gpt2-chinese-couplet
The model is used to generate Chinese couplets. You can download the model either from the GPT2-Chinese Github page , or via HuggingFace from the link gpt2-chinese-couplet .
Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, the output results of Hosted inference API (right) may not be properly displayed..
You can use the model directly with a pipeline for text generation:
When the parameter skip_special_tokens is True:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True) [{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 从 天 外 来 阅 旗'}]
When the parameter skip_special_tokens is False:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-couplet") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-couplet") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]丹 枫 江 冷 人 初 去 -", max_length=25, do_sample=True) [{'generated_text': '[CLS]丹 枫 江 冷 人 初 去 - 黄 叶 声 我 酒 不 辞 [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP] [SEP]'}]
Training data contains 700,000 Chinese couplets which are collected by couplet-clean-dataset .
The model is pre-trained by UER-py on Tencent Cloud . We pre-train 25,000 steps with a sequence length of 64.
python3 preprocess.py --corpus_path corpora/couplet.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path couplet_dataset.pt --processes_num 16 \ --seq_length 64 --data_processor lm
python3 pretrain.py --dataset_path couplet_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/gpt2/config.json \ --output_model_path models/couplet_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 25000 --save_checkpoint_steps 5000 --report_steps 1000 \ --learning_rate 5e-4 --batch_size 64
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path couplet_gpt2_model.bin-25000 \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }