模型:
uer/gpt2-chinese-ancient
The model is used to generate ancient Chinese. You can download the model either from the GPT2-Chinese Github page , or via HuggingFace from the link gpt2-chinese-ancient
You can use the model directly with a pipeline for text generation:
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-ancient") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-ancient") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("当是时", max_length=100, do_sample=True) [{'generated_text': '[CLS]当是时 所 议 者 不 为 无 据 , 况 亦 在 之 列 乎 ? 然 则 今 日 之 事 , 所 当 思 者 在 何 ? 欲 求 国 是 于 天 下 , 莫 在 于 得 人 。 臣 以 为 求 人 之 法 , 不 在 多 用 官 一 途 。 诚 使 得 才 者 众 , 人 才 者 优 , 则 治 所 当 得 , 而 不 事 于 官 者 , 人 才 乃 其 常 也 。 所 当 讲 者'}]
Training data contains 3,000,000 ancient Chinese which are collected by daizhigev20 . Since part of ancient corpus has no punctuation, we used the ancient Chinese punctuation system developed by BNU ICIP lab .
The model is pre-trained by UER-py on Tencent Cloud . We pre-train 500,000 steps with a sequence length of 320. We use extended vocabulary to handle out-of-vocabulary words. The Chinese character that occurs greater than or equal to 100 in ancient Chinese corpus is added to the vocabulary.
python3 preprocess.py --corpus_path corpora/ancient_chinese.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path ancient_chinese_dataset.pt --processes_num 16 \ --seq_length 320 --data_processor lm
python3 pretrain.py --dataset_path ancient_chinese_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --config_path models/bert_base_config.json \ --output_model_path models/ancient_chinese_gpt2_model.bin \ --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --total_steps 500000 --save_checkpoint_steps 100000 --report_steps 10000 \ --learning_rate 5e-4 --batch_size 32
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path ancient_chinese_gpt2_model.bin-500000 \ --output_model_path pytorch_model.bin \ --layers_num 12
@article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} }