模型:

timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320

英文

convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320模型卡片

一个ConvNeXt图像分类模型。CLIP图像塔的权重在LAION上进行了 OpenCLIP 次预训练,并在ImageNet-12k和ImageNet-1k上进行了微调,使用了由Ross Wightman在timm中提供的模型。

有关预训练的详细信息,请参见相关的OpenCLIP模型卡片:

模型详情

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 192, 80, 80])
    #  torch.Size([1, 384, 40, 40])
    #  torch.Size([1, 768, 20, 20])
    #  torch.Size([1, 1536, 10, 10])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1536, 10, 10) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索此模型的数据集和运行时指标 model results .

所有时间指标均基于RTX 3090的eager模式PyTorch 1.13进行测量,使用了AMP。

model top1 top5 img_size param_count gmacs macts samples_per_sec batch_size
12318321 88.848 98.742 512 660.29 600.81 413.07 28.58 48
12319321 88.668 98.738 384 660.29 337.96 232.35 50.56 64
12320321 88.612 98.704 256 846.47 198.09 124.45 122.45 256
12321321 88.312 98.578 384 200.13 101.11 126.74 196.84 256
12322321 88.196 98.532 384 197.96 101.1 126.74 128.94 128
12323321 87.968 98.47 320 200.13 70.21 88.02 283.42 256
12324321 87.75 98.556 384 350.2 179.2 168.99 124.85 192
12325321 87.646 98.422 384 88.72 45.21 84.49 209.51 256
12326321 87.476 98.382 384 197.77 101.1 126.74 194.66 256
12327321 87.344 98.218 256 200.13 44.94 56.33 438.08 256
12328321 87.26 98.248 224 197.96 34.4 43.13 376.84 256
12329321 87.138 98.212 384 88.59 45.21 84.49 365.47 256
12330321 87.002 98.208 224 350.2 60.98 57.5 368.01 256
12331321 86.796 98.264 384 88.59 45.21 84.49 366.54 256
12332321 86.74 98.022 224 88.72 15.38 28.75 624.23 256
12333321 86.636 98.028 224 197.77 34.4 43.13 581.43 256
12334321 86.504 97.97 384 88.59 45.21 84.49 368.14 256
12335321 86.344 97.97 256 88.59 20.09 37.55 816.14 256
12336321 86.256 97.75 224 660.29 115.0 79.07 154.72 256
12337321 86.182 97.92 384 50.22 25.58 63.37 516.19 256
12338321 86.154 97.68 256 88.59 20.09 37.55 819.86 256
12339321 85.822 97.866 224 88.59 15.38 28.75 1037.66 256
12340321 85.778 97.886 384 50.22 25.58 63.37 518.95 256
12341321 85.742 97.584 224 197.96 34.4 43.13 375.23 256
12342321 85.174 97.506 224 50.22 8.71 21.56 1474.31 256
12343321 85.118 97.608 384 28.59 13.14 39.48 856.76 256
12344321 85.112 97.63 384 28.64 13.14 39.48 491.32 256
12345321 84.874 97.09 224 88.72 15.38 28.75 625.33 256
12346321 84.562 97.394 224 50.22 8.71 21.56 1478.29 256
12347321 84.282 96.892 224 197.77 34.4 43.13 584.28 256
12348321 84.186 97.124 224 28.59 4.47 13.44 2433.7 256
12349321 84.084 97.14 384 28.59 13.14 39.48 862.95 256
12350321 83.894 96.964 224 28.64 4.47 13.44 1452.72 256
12351321 83.82 96.746 224 88.59 15.38 28.75 1054.0 256
12352321 83.37 96.742 384 15.62 7.22 24.61 801.72 256
12353321 83.142 96.434 224 50.22 8.71 21.56 1464.0 256
12354321 82.92 96.284 224 28.64 4.47 13.44 1425.62 256
12355321 82.898 96.616 224 28.59 4.47 13.44 2480.88 256
12356321 82.282 96.344 224 15.59 2.46 8.37 3926.52 256
12357321 82.216 95.852 224 28.59 4.47 13.44 2529.75 256
12358321 82.066 95.854 224 28.59 4.47 13.44 2346.26 256
12359321 82.03 96.166 224 15.62 2.46 8.37 2300.18 256
12360321 81.83 95.738 224 15.62 2.46 8.37 2321.48 256
12361321 80.866 95.246 224 15.65 2.65 9.38 3523.85 256
12362321 80.768 95.334 224 15.59 2.46 8.37 3915.58 256
12363321 80.304 95.072 224 9.07 1.37 6.1 3274.57 256
12364321 79.526 94.558 224 9.05 1.37 6.1 5686.88 256
12365321 79.522 94.692 224 9.06 1.43 6.5 5422.46 256
12366321 78.488 93.98 224 5.23 0.79 4.57 4264.2 256
12367321 77.86 93.83 224 5.23 0.82 4.87 6910.6 256
12368321 77.454 93.68 224 5.22 0.79 4.57 7189.92 256
12369321 76.664 93.044 224 3.71 0.55 3.81 4728.91 256
12370321 75.88 92.846 224 3.7 0.58 4.11 7963.16 256
12371321 75.664 92.9 224 3.7 0.55 3.81 8439.22 256

引用

@software{ilharco_gabriel_2021_5143773,
  author       = {Ilharco, Gabriel and
                  Wortsman, Mitchell and
                  Wightman, Ross and
                  Gordon, Cade and
                  Carlini, Nicholas and
                  Taori, Rohan and
                  Dave, Achal and
                  Shankar, Vaishaal and
                  Namkoong, Hongseok and
                  Miller, John and
                  Hajishirzi, Hannaneh and
                  Farhadi, Ali and
                  Schmidt, Ludwig},
  title        = {OpenCLIP},
  month        = jul,
  year         = 2021,
  note         = {If you use this software, please cite it as below.},
  publisher    = {Zenodo},
  version      = {0.1},
  doi          = {10.5281/zenodo.5143773},
  url          = {https://doi.org/10.5281/zenodo.5143773}
}
@inproceedings{schuhmann2022laionb,
  title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
  author={Christoph Schuhmann and
          Romain Beaumont and
          Richard Vencu and
          Cade W Gordon and
          Ross Wightman and
          Mehdi Cherti and
          Theo Coombes and
          Aarush Katta and
          Clayton Mullis and
          Mitchell Wortsman and
          Patrick Schramowski and
          Srivatsa R Kundurthy and
          Katherine Crowson and
          Ludwig Schmidt and
          Robert Kaczmarczyk and
          Jenia Jitsev},
  booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2022},
  url={https://openreview.net/forum?id=M3Y74vmsMcY}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@inproceedings{Radford2021LearningTV,
  title={Learning Transferable Visual Models From Natural Language Supervision},
  author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
  booktitle={ICML}, 
  year={2021}
}
@article{liu2022convnet,
  author  = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
  title   = {A ConvNet for the 2020s},
  journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year    = {2022},
}