模型:
theblackcat102/pythia-1b-deduped-sft
This modelcard aims to be a base template for new models. It has been generated using this raw template .
See the example on the right
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
Use the code below to get started with the model.
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "theblackcat102/pythia-1b-deduped-sft" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).half().eval().cuda() input_text = "<human>What's the earth population?<bot>" inputs = tokenizer(input_text, return_tensors="pt", padding=True).to(0) outputs = model.generate( **inputs, early_stopping=True, max_new_tokens=args.max_new_tokens, do_sample=True, top_k=args.top_k, temperature=args.temperature, pad_token_id=tokenizer.eos_token_id, # dialogue_collator.py line 36 ) output = tokenizer.decode(outputs[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"]) print(output)
deepspeed trainer_sft.py --configs defaults pythia-1b --deepspeed
This model was trained for 1000 iterations.
defaults: learning_rate: 1e-5 gradient_checkpointing: false gradient_accumulation_steps: 32 per_device_train_batch_size: 2 per_device_eval_batch_size: 2 weight_decay: 0.00 warmup_steps: 600 eval_steps: 250 save_steps: 250 max_length: 512 num_train_epochs: 2 logging_steps: 10 max_grad_norm: 2.0 save_total_limit: 4 fp16: true eval_accumulation_steps: freeze_layer: datasets: - gsm8k_hard - webgpt - squad_v2 - adversarial_qa - private_tuning - oa_translated - prosocial_dialogue - math_qa - wikihow - joke - gsm8k - ted_trans_en-hi - ted_trans_de-ja - ted_trans_nl-en - ted_trans_en-ja - ted_trans_en-es - ted_trans_en-ms - xsum: fraction: 0.5 - cnn_dailymail: fraction: 0.5 - multi_news: fraction: 0.5 - tldr_news: fraction: 0.5 - scitldr: fraction: 0.5 - samsum: fraction: 0.5 - debate_sum: fraction: 0.5 - billsum: fraction: 0.5 - wmt2019_zh-en: fraction: 0.9 - wmt2019_ru-en: fraction: 0.9 - wmt2019_de-en: fraction: 0.9 - wmt2019_fr-de: fraction: 0.9 - essay_instruction - reddit_eli5 - reddit_askh - reddit_asks cache_dir: /fsx/home-theblackcat02/.cache loss_fn: CrossEntropyLoss eval_size: log_dir: "base" quantization: false seq2seqmodel: false poly_eps: 1.0 fuse_gelu: true log_wandb: true samples_mixing: true # uses collator that mixes samples in the batch to create a single sample with possible multiple tasks within verbose: false pythia-1b: learning_rate: 5e-6 model_name: EleutherAI/pythia-1b-deduped weight_decay: 0.01 max_length: 540 fp16: true warmup_steps: 1000 gradient_accumulation_steps: 20 per_device_train_batch_size: 20 per_device_eval_batch_size: 2 eval_steps: 500 save_steps: 500
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019) .
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]