模型:
superb/hubert-base-superb-ks
这是 S3PRL's Hubert for the SUPERB Keyword Spotting task 的移植版。
基础模型是 hubert-base-ls960 ,该模型在16kHz采样的语音音频上进行了预训练。使用该模型时,请确保语音输入也是以16kHz进行采样。
更多信息请参阅 SUPERB: Speech processing Universal PERformance Benchmark 。
关键词检测(Keyword Spotting, KS)通过将话语分类为预定义的一组词来检测预注册的关键词。该任务通常在设备上执行,以获得快速的响应时间。因此,准确性、模型大小和推理时间都至关重要。SUPERB使用广泛使用的 Speech Commands dataset v1.0 执行此任务。该数据集包含十个关键词类别、一个静音类别和一个未知类别以包括误报。
有关原始模型的训练和评估说明,请参阅 S3PRL downstream task README 。
您可以通过音频分类流程使用该模型:
from datasets import load_dataset from transformers import pipeline dataset = load_dataset("anton-l/superb_demo", "ks", split="test") classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks") labels = classifier(dataset[0]["file"], top_k=5)
或直接使用该模型:
import torch from datasets import load_dataset from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor from torchaudio.sox_effects import apply_effects_file effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]] def map_to_array(example): speech, _ = apply_effects_file(example["file"], effects) example["speech"] = speech.squeeze(0).numpy() return example # load a demo dataset and read audio files dataset = load_dataset("anton-l/superb_demo", "ks", split="test") dataset = dataset.map(map_to_array) model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks") # compute attention masks and normalize the waveform if needed inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt") logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
评估指标为准确性。
s3prl | transformers | |
---|---|---|
test | 0.9630 | 0.9672 |
@article{yang2021superb, title={SUPERB: Speech processing Universal PERformance Benchmark}, author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others}, journal={arXiv preprint arXiv:2105.01051}, year={2021} }