模型:
speechbrain/asr-wav2vec2-commonvoice-fr
This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (French Language) within SpeechBrain. For a better experience, we encourage you to learn more about SpeechBrain .
The performance of the model is the following:
Release | Test CER | Test WER | GPUs |
---|---|---|---|
24-08-21 | 3.19 | 9.96 | 2xV100 32GB |
This ASR system is composed of 2 different but linked blocks:
The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling transcribe_file if needed.
First of all, please install tranformers and SpeechBrain with the following command:
pip install speechbrain transformers
Please notice that we encourage you to read our tutorials and learn more about SpeechBrain .
from speechbrain.pretrained import EncoderASR asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr") asr_model.transcribe_file('speechbrain/asr-wav2vec2-commonvoice-fr/example-fr.wav')
To perform inference on the GPU, add run_opts={"device":"cuda"} when calling the from_hparams method.
The model was trained with SpeechBrain. To train it from scratch follow these steps:
git clone https://github.com/speechbrain/speechbrain/
cd speechbrain pip install -r requirements.txt pip install -e .
cd recipes/CommonVoice/ASR/CTC/ python train_with_wav2vec.py hparams/train_fr_with_wav2vec.yaml --data_folder=your_data_folder
You can find our training results (models, logs, etc) here .
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
Referencing SpeechBrain@misc{SB2021, author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua }, title = {SpeechBrain}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}}, }About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
Website: https://speechbrain.github.io/