模型:
shibing624/t5-chinese-couplet
T5中文对联生成模型
t5-chinese-couplet evaluate couplet test data:
The overall performance of T5 on couplet test :
prefix | input_text | target_text | pred |
---|---|---|---|
对联: | 春回大地,对对黄莺鸣暖树 | 日照神州,群群紫燕衔新泥 | 福至人间,家家紫燕舞和风 |
在Couplet测试集上生成结果满足字数相同、词性对齐、词面对齐、形似要求,而语义对仗工整和平仄合律还不满足。
T5的网络结构(原生T5):
本项目开源在文本生成项目: textgen ,可支持T5模型,通过如下命令调用:
Install package:
pip install -U textgen
from textgen import T5Model model = T5Model("t5", "shibing624/t5-chinese-couplet") r = model.predict(["对联:丹枫江冷人初去"]) print(r) # ['白石矶寒客不归']
Without textgen , you can use the model like this:
First, you pass your input through the transformer model, then you get the generated sentence.
Install package:
pip install transformers
from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("shibing624/t5-chinese-couplet") model = T5ForConditionalGeneration.from_pretrained("shibing624/t5-chinese-couplet") def batch_generate(input_texts, max_length=64): features = tokenizer(input_texts, return_tensors='pt') outputs = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=max_length) return tokenizer.batch_decode(outputs, skip_special_tokens=True) r = batch_generate(["对联:丹枫江冷人初去"]) print(r)
output:
['白石矶寒客不归']
模型文件组成:
t5-chinese-couplet ├── config.json ├── model_args.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json ├── spiece.model └── vocab.txt
数据格式:
head -n 1 couplet_files/couplet/train/in.txt 晚 风 摇 树 树 还 挺 head -n 1 couplet_files/couplet/train/out.txt 晨 露 润 花 花 更 红
如果需要训练T5模型,请参考 https://github.com/shibing624/textgen/blob/main/docs/%E5%AF%B9%E8%81%94%E7%94%9F%E6%88%90%E6%A8%A1%E5%9E%8B%E5%AF%B9%E6%AF%94.md
@software{textgen, author = {Xu Ming}, title = {textgen: Implementation of Text Generation models}, year = {2022}, url = {https://github.com/shibing624/textgen}, }