模型:
shibing624/code-autocomplete-distilgpt2-python
code-autocomplete, a code completion plugin for Python.
code-autocomplete can automatically complete the code of lines and blocks with GPT2.
Open source repo: code-autocomplete ,support GPT2 model, usage:
from autocomplete.gpt2_coder import GPT2Coder m = GPT2Coder("shibing624/code-autocomplete-distilgpt2-python") print(m.generate('import torch.nn as')[0])
Also, use huggingface/transformers:
Please use 'GPT2' related functions to load this model!
import os from transformers import GPT2Tokenizer, GPT2LMHeadModel os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" tokenizer = GPT2Tokenizer.from_pretrained("shibing624/code-autocomplete-distilgpt2-python") model = GPT2LMHeadModel.from_pretrained("shibing624/code-autocomplete-distilgpt2-python") prompts = [ """from torch import nn class LSTM(Module): def __init__(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int):""", """import numpy as np import torch import torch.nn as""", "import java.util.ArrayList", "def factorial(n):", ] for prompt in prompts: input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=64 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, repetition_penalty=1.0, do_sample=True, num_return_sequences=1, length_penalty=2.0, early_stopping=True) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) print("=" * 20)
output:
from torch import nn class LSTM(Module): def __init__(self, *, n_tokens: int, embedding_size: int, hidden_size: int, n_layers: int): self.embedding_size = embedding_size ==================== import numpy as np import torch import torch.nn as nn import torch.nn.functional as F
Model files:
code-autocomplete-distilgpt2-python ├── config.json ├── merges.txt ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.json
download code-autocomplete ,
cd autocomplete python create_dataset.py
If you want train code-autocomplete GPT2 model,refer https://github.com/shibing624/code-autocomplete/blob/main/autocomplete/gpt2_coder.py
Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this paper and first released at this page .
Disclaimer: The team releasing GPT-2 also wrote a model card for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.
@misc{code-autocomplete, author = {Xu Ming}, title = {code-autocomplete: Code AutoComplete with GPT model}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, url = {https://github.com/shibing624/code-autocomplete}, }