模型:
sentence-transformers/msmarco-roberta-base-ance-firstp
This is a port of the ANCE FirstP Model to sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-roberta-base-ance-firstp') embeddings = model.encode(sentences) print(embeddings)
For an automated evaluation of this model, see the Sentence Embeddings Benchmark : https://seb.sbert.net
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) (3): LayerNorm( (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) ) )
Have a look at: ANCE Model