中文

sentence-transformers/gtr-t5-base

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space. The model was specifically trained for the task of sematic search.

This model was converted from the Tensorflow model gtr-base-1 to PyTorch. When using this model, have a look at the publication: Large Dual Encoders Are Generalizable Retrievers . The tfhub model and this PyTorch model can produce slightly different embeddings, however, when run on the same benchmarks, they produce identical results.

The model uses only the encoder from a T5-base model. The weights are stored in FP16.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/gtr-t5-base')
embeddings = model.encode(sentences)
print(embeddings)

The model requires sentence-transformers version 2.2.0 or newer.

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark : https://seb.sbert.net

Citing & Authors

If you find this model helpful, please cite the respective publication: Large Dual Encoders Are Generalizable Retrievers