模型:
sentence-transformers/distiluse-base-multilingual-cased
这是一个 sentence-transformers 模型:它将句子和段落映射到一个512维的稠密向量空间,并可以用于聚类或语义搜索等任务。
安装了 sentence-transformers 后,使用该模型变得非常简单:
pip install -U sentence-transformers
然后您可以像这样使用模型:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased') embeddings = model.encode(sentences) print(embeddings)
有关此模型的自动化评估,请参见句子嵌入基准(Sentence Embeddings Benchmark): https://seb.sbert.net
SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) )
这个模型是由 sentence-transformers 训练的。
如果您觉得这个模型有帮助,请随意引用我们的出版物 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks :
@inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", }