模型:
sb3/sac-Walker2d-v3
This is a trained model of a SAC agent playing Walker2d-v3 using the stable-baselines3 library and the RL Zoo .
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo SB3: https://github.com/DLR-RM/stable-baselines3 SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo sac --env Walker2d-v3 -orga sb3 -f logs/ python enjoy.py --algo sac --env Walker2d-v3 -f logs/
python train.py --algo sac --env Walker2d-v3 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo sac --env Walker2d-v3 -f logs/ -orga sb3
OrderedDict([('learning_starts', 10000), ('n_timesteps', 1000000.0), ('policy', 'MlpPolicy'), ('use_sde', False), ('normalize', False)])