Pretrained model on Bulgarian language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository . This model is cased: it does make a difference between bulgarian and Bulgarian.
The model was trained similarly to RuBert wherein the Multilingual Bert was adapted for the Russian language.
The training data was Bulgarian text from OSCAR , Chitanka and Wikipedia .
Here is how to use this model in PyTorch:
>>> from transformers import pipeline >>> >>> model = pipeline( >>> 'fill-mask', >>> model='rmihaylov/bert-base-bg', >>> tokenizer='rmihaylov/bert-base-bg', >>> device=0, >>> revision=None) >>> output = model("София е [MASK] на България.") >>> print(output) [{'score': 0.12665307521820068, 'sequence': 'София е столица на България.', 'token': 2659, 'token_str': 'столица'}, {'score': 0.07470757514238358, 'sequence': 'София е Перлата на България.', 'token': 102146, 'token_str': 'Перлата'}, {'score': 0.06786204129457474, 'sequence': 'София е Столицата на България.', 'token': 45495, 'token_str': 'Столицата'}, {'score': 0.05533991754055023, 'sequence': 'София е Столица на България.', 'token': 100524, 'token_str': 'Столица'}, {'score': 0.05485989898443222, 'sequence': 'София е столицата на България.', 'token': 2294, 'token_str': 'столицата'}]