中文

japanese-gpt-neox-3.6b-instruction-sft

Overview

This repository provides a Japanese GPT-NeoX model of 3.6 billion parameters. The model is based on rinna/japanese-gpt-neox-3.6b and has been finetuned to serve as an instruction-following conversational agent.

I/O Format

A special format has been adopted to construct inputs.

  • An input prompt is formatted as a conversation between ユーザー and システム .
  • Each input utterance consists of (1) its speaker ( "ユーザー" or "システム" ), (2) a colon ( ":" ), (3) a whitespace ( " " ), and (4) utterance text (e.g. "世界で一番高い山は?" ).
  • The input prompt should be ended with "システム: " to acknowledge the model to generate a response.
  • Since the model's tokenizer does not recognize "\n" , a special newline symbol "<NL>" is used instead.
  • All the newlines in input and output utterances should be replaced with "<NL>" .
  • All the utterances in the input prompt should be separated by "<NL>" .

Following is an example to construct an input from a conversation.

prompt = [
    {
        "speaker": "ユーザー",
        "text": "日本のおすすめの観光地を教えてください。"
    },
    {
        "speaker": "システム",
        "text": "どの地域の観光地が知りたいですか?"
    },
    {
        "speaker": "ユーザー",
        "text": "渋谷の観光地を教えてください。"
    }
]
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in prompt
]
prompt = "<NL>".join(prompt)
prompt = (
    prompt
    + "<NL>"
    + "システム: "
)
print(prompt)
# "ユーザー: 日本のおすすめの観光地を教えてください。<NL>システム: どの地域の観光地が知りたいですか?<NL>ユーザー: 渋谷の観光地を教えてください。<NL>システム: "

How to use the model

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft")

if torch.cuda.is_available():
    model = model.to("cuda")

token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        do_sample=True,
        max_new_tokens=128,
        temperature=0.7,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
output = output.replace("<NL>", "\n")
print(output)
"""分かりました。いくつかのおすすめを紹介します。
1. ハチ公像です。ハチ公像は、日本の観光スポットの1つとして人気があります。
2. スクランブル交差点です。多くの人々が行き交う大きな交差点で、観光客に人気のスポットです。
3. 109です。109は、ショッピングやエンターテイメント施設です。
4. 道玄坂です。道玄坂は、日本の商業地区である坂道です。</s>"""

Tokenization

The model uses a sentencepiece -based tokenizer.

  • The tokenizer has a vocabulary size of 32,000.
  • It uses sentencepiece's byte fallback feature to decompose unknown text pieces into UTF-8 byte pieces and to avoid producing <UNK> tokens.
  • sentencepiece's --add_dummy_prefix option was turned off so that a leading whitespace will not be prepended automatically.
      print(tokenizer.tokenize("吾輩は猫である"))
      # ['吾', '輩', 'は', '猫', 'である']
      # instead of ['▁', '吾', '輩', 'は', '猫', 'である'] as in rinna/japanese-gpt-1b
    
  • sentencepiece's --remove_extra_whitespaces option was turned off so that leading, trailing, and duplicate whitespaces are reserved.
      print(tokenizer.tokenize("  吾輩は  猫である   "))
      # ['▁', '▁', '吾', '輩', 'は', '▁', '▁', '猫', 'である', '▁', '▁', '▁']
      # instead of ['▁', '吾', '輩', 'は', '▁猫', 'である'] as in rinna/japanese-gpt-1b
    
  • Don't forget to set use_fast=False to make the above features function correctly.
      good_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b", use_fast=False)
      bad_tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b")
    
      print(good_tokenizer.decode(good_tokenizer.encode("გამარჯობა  吾輩は  猫である   ")))
      # 'გამარჯობა  吾輩は  猫である   </s>'
      print(bad_tokenizer.decode(bad_tokenizer.encode("გამარჯობა  吾輩は  猫である   ")))
      # 'გამარ[UNK]ობა 吾輩は 猫である </s>'
    

Licenese

The MIT license