模型:

racai/distilbert-base-romanian-cased

中文

Romanian DistilBERT

This repository contains the uncased Romanian DistilBERT (named Distil-BERT-base-ro in the paper). The teacher model used for distillation is: dumitrescustefan/bert-base-romanian-cased-v1 .

The model was introduced in this paper . The adjacent code can be found here .

Usage

from transformers import AutoTokenizer, AutoModel

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("racai/distilbert-base-romanian-cased")
model = AutoModel.from_pretrained("racai/distilbert-base-romanian-cased")

# tokenize a test sentence
input_ids = tokenizer.encode("Aceasta este o propoziție de test.", add_special_tokens=True, return_tensors="pt")

# run the tokens trough the model
outputs = model(input_ids)

print(outputs)

Model Size

It is 35% smaller than its teacher bert-base-romanian-cased-v1 .

Model Size (MB) Params (Millions)
bert-base-romanian-cased-v1 477 124
distilbert-base-romanian-cased 312 81

Evaluation

We evaluated the model in comparison with its teacher on 5 Romanian tasks:

  • UPOS : Universal Part of Speech (F1-macro)
  • XPOS : Extended Part of Speech (F1-macro)
  • NER : Named Entity Recognition (F1-macro)
  • SAPN : Sentiment Anlaysis - Positive vs Negative (Accuracy)
  • SAR : Sentiment Analysis - Rating (F1-macro)
  • DI : Dialect identification (F1-macro)
  • STS : Semantic Textual Similarity (Pearson)
Model UPOS XPOS NER SAPN SAR DI STS
bert-base-romanian-cased-v1 98.00 96.46 85.88 98.07 79.61 95.58 80.30
distilbert-base-romanian-cased 97.97 97.08 83.35 98.20 80.51 96.31 80.57

BibTeX entry and citation info

@article{avram2021distilling,
  title={Distilling the Knowledge of Romanian BERTs Using Multiple Teachers},
  author={Andrei-Marius Avram and Darius Catrina and Dumitru-Clementin Cercel and Mihai Dascălu and Traian Rebedea and Vasile Păiş and Dan Tufiş},
  journal={ArXiv},
  year={2021},
  volume={abs/2112.12650}
}