英文

以下模型是从 official Google BERT repository 中转换得到的Pytorch预训练模型,原本是来自Tensorflow的检查点。

这是较小的预训练BERT变体之一,还有 bert-small bert-medium 。它们在研究“好读学生学得更好:预训练紧凑模型的重要性”( arxiv )中被引入,并在研究“NLI的泛化:超越简单启发式的方法(不是)”( arXiv )中转移到HF。这些模型应该在下游任务上进行训练。

如果您使用了该模型,请考虑引用这两篇论文:

@misc{bhargava2021generalization,
      title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, 
      author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers},
      year={2021},
      eprint={2110.01518},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@article{DBLP:journals/corr/abs-1908-08962,
  author    = {Iulia Turc and
               Ming{-}Wei Chang and
               Kenton Lee and
               Kristina Toutanova},
  title     = {Well-Read Students Learn Better: The Impact of Student Initialization
               on Knowledge Distillation},
  journal   = {CoRR},
  volume    = {abs/1908.08962},
  year      = {2019},
  url       = {http://arxiv.org/abs/1908.08962},
  eprinttype = {arXiv},
  eprint    = {1908.08962},
  timestamp = {Thu, 29 Aug 2019 16:32:34 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

该模型的配置:prajjwal1/bert-mini(L=4,H=256) Model Link

其他要查看的模型:

原始实现和更多信息可以在 this Github repository 中找到。

Twitter: @prajjwal_1