ner-bert-large-portuguese-cased-lenerbr is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model pierreguillou/bert-large-cased-pt-lenerbr on the dataset LeNER_br by using a NER objective.
Due to the small size of the finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset ( note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics ):
Check as well the base version of this model with a f1 of 0.893.
Note : the model pierreguillou/bert-large-cased-pt-lenerbr is a language model that was created through the finetuning of the model BERTimbau large on the dataset LeNER-Br language modeling by using a MASK objective. This first specialization of the language model before finetuning on the NER task allows to get a better NER model.
NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro (29/12/2021)
You can test this model into the widget of this page.
Use as well the NER App that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset.
# install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction]))
You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence.
!pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text)
The notebook of finetuning ( HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb ) is in github.
Num examples = 7828 Num Epochs = 20 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 39140 Step Training Loss Validation Loss Precision Recall F1 Accuracy 500 0.250000 0.140582 0.760833 0.770323 0.765548 0.963125 1000 0.076200 0.117882 0.829082 0.817849 0.823428 0.966569 1500 0.082400 0.150047 0.679610 0.914624 0.779795 0.957213 2000 0.047500 0.133443 0.817678 0.857419 0.837077 0.969190 2500 0.034200 0.230139 0.895672 0.845591 0.869912 0.964070 3000 0.033800 0.108022 0.859225 0.887312 0.873043 0.973700 3500 0.030100 0.113467 0.855747 0.885376 0.870310 0.975879 4000 0.029900 0.118619 0.850207 0.884946 0.867229 0.974477 4500 0.022500 0.124327 0.841048 0.890968 0.865288 0.975041 5000 0.020200 0.129294 0.801538 0.918925 0.856227 0.968077 5500 0.019700 0.128344 0.814222 0.908602 0.858827 0.969250 6000 0.024600 0.182563 0.908087 0.866882 0.887006 0.968565 6500 0.012600 0.159217 0.829883 0.913763 0.869806 0.969357 7000 0.020600 0.183726 0.854557 0.893333 0.873515 0.966447 7500 0.014400 0.141395 0.777716 0.905161 0.836613 0.966828 8000 0.013400 0.139378 0.873042 0.899140 0.885899 0.975772 8500 0.014700 0.142521 0.864152 0.901505 0.882433 0.976366 9000 0.010900 0.122889 0.897522 0.919140 0.908202 0.980831 9500 0.013500 0.143407 0.816580 0.906667 0.859268 0.973395 10000 0.010400 0.144946 0.835608 0.908387 0.870479 0.974629 10500 0.007800 0.143086 0.847587 0.910108 0.877735 0.975985 11000 0.008200 0.156379 0.873778 0.884301 0.879008 0.976321 11500 0.008200 0.133356 0.901193 0.910108 0.905628 0.980328 12000 0.006900 0.133476 0.892202 0.920215 0.905992 0.980572 12500 0.006900 0.129991 0.890159 0.904516 0.897280 0.978683
{'JURISPRUDENCIA': {'f1': 0.8135593220338984, 'number': 657, 'precision': 0.865979381443299, 'recall': 0.7671232876712328}, 'LEGISLACAO': {'f1': 0.8888888888888888, 'number': 571, 'precision': 0.8952042628774423, 'recall': 0.882661996497373}, 'LOCAL': {'f1': 0.850467289719626, 'number': 194, 'precision': 0.7777777777777778, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8740635033892258, 'number': 1340, 'precision': 0.8373205741626795, 'recall': 0.914179104477612}, 'PESSOA': {'f1': 0.9836677554829678, 'number': 1072, 'precision': 0.9841269841269841, 'recall': 0.9832089552238806}, 'TEMPO': {'f1': 0.9669669669669669, 'number': 816, 'precision': 0.9481743227326266, 'recall': 0.9865196078431373}, 'overall_accuracy': 0.9808310603867311, 'overall_f1': 0.9082022949426265, 'overall_precision': 0.8975220495590088, 'overall_recall': 0.9191397849462366}