中文

Document Understanding model (finetuned LiLT base at paragraph level on DocLayNet base)

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base with the DocLayNet base dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4104
  • Precision: 0.8634
  • Recall: 0.8634
  • F1: 0.8634
  • Token Accuracy: 0.8634
  • Paragraph Accuracy: 0.6815

Accuracy at paragraph level

  • Paragraph Accuracy: 68.15%
  • Accuracy by label
    • Caption: 22.82%
    • Footnote: 0.0%
    • Formula: 97.33%
    • List-item: 8.42%
    • Page-footer: 98.77%
    • Page-header: 77.81%
    • Picture: 39.16%
    • Section-header: 76.17%
    • Table: 37.7%
    • Text: 86.78%
    • Title: 0.0%

References

Blog posts

Notebooks (paragraph level)

Notebooks (line level)

APP

You can test this model with this APP in Hugging Face Spaces: Inference APP for Document Understanding at paragraph level (v1) .

You can run as well the corresponding notebook: Document AI | Inference APP at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)

DocLayNet dataset

DocLayNet dataset (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories.

Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:

Paper: DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis (06/02/2022)

Model description

The model was finetuned at paragraph level on chunk of 512 tokens with overlap of 128 tokens . Thus, the model was trained with all layout and text data of all pages of the dataset.

At inference time, a calculation of best probabilities give the label to each paragraph bounding boxes.

Inference

See notebook: Document AI | Inference at paragraph level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)

Training and evaluation data

See notebook: Document AI | Fine-tune LiLT on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.05 100 0.9875 0.6585 0.6585 0.6585 0.6585
No log 0.11 200 0.7886 0.7551 0.7551 0.7551 0.7551
No log 0.16 300 0.5894 0.8248 0.8248 0.8248 0.8248
No log 0.21 400 0.4794 0.8396 0.8396 0.8396 0.8396
0.7446 0.27 500 0.3993 0.8703 0.8703 0.8703 0.8703
0.7446 0.32 600 0.3631 0.8857 0.8857 0.8857 0.8857
0.7446 0.37 700 0.4096 0.8630 0.8630 0.8630 0.8630
0.7446 0.43 800 0.4492 0.8528 0.8528 0.8528 0.8528
0.7446 0.48 900 0.3839 0.8834 0.8834 0.8834 0.8834
0.4464 0.53 1000 0.4365 0.8498 0.8498 0.8498 0.8498
0.4464 0.59 1100 0.3616 0.8812 0.8812 0.8812 0.8812
0.4464 0.64 1200 0.3949 0.8796 0.8796 0.8796 0.8796
0.4464 0.69 1300 0.4184 0.8613 0.8613 0.8613 0.8613
0.4464 0.75 1400 0.4130 0.8743 0.8743 0.8743 0.8743
0.3672 0.8 1500 0.4535 0.8289 0.8289 0.8289 0.8289
0.3672 0.85 1600 0.3681 0.8713 0.8713 0.8713 0.8713
0.3672 0.91 1700 0.3446 0.8857 0.8857 0.8857 0.8857
0.3672 0.96 1800 0.4104 0.8634 0.8634 0.8634 0.8634

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2

Other models