模型:
philschmid/layoutlm-funsd
任务:
otherThis model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
The following hyperparameters were used during training:
Before we can get started, make sure you meet all of the following requirements:
In this tutorial, you will learn how to deploy a LayoutLM to Hugging Face Inference Endpoints and how you can integrate it via an API into your products.
This tutorial is not covering how you create the custom handler for inference. If you want to learn how to create a custom Handler for Inference Endpoints, you can either checkout the documentation or go through “Custom Inference with Hugging Face Inference Endpoints”
We are going to deploy philschmid/layoutlm-funsd which implements the following handler.py
from typing import Dict, List, Any from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor import torch from subprocess import run # install tesseract-ocr and pytesseract run("apt install -y tesseract-ocr", shell=True, check=True) run("pip install pytesseract", shell=True, check=True) # helper function to unnormalize bboxes for drawing onto the image def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] # set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): # load model and processor from path self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device) self.processor = LayoutLMv2Processor.from_pretrained(path) def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]: """ Args: data (:obj:): includes the deserialized image file as PIL.Image """ # process input image = data.pop("inputs", data) # process image encoding = self.processor(image, return_tensors="pt") # run prediction with torch.inference_mode(): outputs = self.model( input_ids=encoding.input_ids.to(device), bbox=encoding.bbox.to(device), attention_mask=encoding.attention_mask.to(device), token_type_ids=encoding.token_type_ids.to(device), ) predictions = outputs.logits.softmax(-1) # post process output result = [] for item, inp_ids, bbox in zip( predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu() ): label = self.model.config.id2label[int(item.argmax().cpu())] if label == "O": continue score = item.max().item() text = self.processor.tokenizer.decode(inp_ids) bbox = unnormalize_box(bbox.tolist(), image.width, image.height) result.append({"label": label, "score": score, "text": text, "bbox": bbox}) return {"predictions": result}
Hugging Face Inference endpoints can directly work with binary data, this means that we can directly send our image from our document to the endpoint. We are going to use requests to send our requests. (make your you have it installed pip install requests )
import json import requests as r import mimetypes ENDPOINT_URL="" # url of your endpoint HF_TOKEN="" # organization token where you deployed your endpoint def predict(path_to_image:str=None): with open(path_to_image, "rb") as i: b = i.read() headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": mimetypes.guess_type(path_to_image)[0] } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_image="path_to_your_image.png") print(prediction) # {'predictions': [{'label': 'I-ANSWER', 'score': 0.4823932945728302, 'text': '[CLS]', 'bbox': [0.0, 0.0, 0.0, 0.0]}, {'label': 'B-HEADER', 'score': 0.992474377155304, 'text': 'your', 'bbox': [1712.529, 181.203, 1859.949, 228.88799999999998]},
To get a better understanding of what the model predicted you can also draw the predictions on the provided image.
from PIL import Image, ImageDraw, ImageFont # draw results on image def draw_result(path_to_image,result): image = Image.open(path_to_image) label2color = { "B-HEADER": "blue", "B-QUESTION": "red", "B-ANSWER": "green", "I-HEADER": "blue", "I-QUESTION": "red", "I-ANSWER": "green", } # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for res in result: draw.rectangle(res["bbox"], outline="black") draw.rectangle(res["bbox"], outline=label2color[res["label"]]) draw.text((res["bbox"][0] + 10, res["bbox"][1] - 10), text=res["label"], fill=label2color[res["label"]], font=font) return image draw_result("path_to_your_image.png", prediction["predictions"])