模型:

philschmid/clip-zero-shot-image-classification

中文

Fork of openai/clip-vit-base-patch32 for a zero-sho-image-classification Inference endpoint.

This repository implements a custom task for zero-shot-image-classification for ? Inference Endpoints. The code for the customized pipeline is in the pipeline.py .

To use deploy this model a an Inference Endpoint you have to select Custom as task to use the pipeline.py file. -> double check if it is selected

expected Request payload

{
  "image": "/9j/4AAQSkZJRgABAQEBLAEsAAD/2wBDAAMCAgICAgMC....", // base64 image as bytes
  "candiates":["sea","palace","car","ship"]
}

below is an example on how to run a request using Python and requests .

Run Request

  • prepare an image.
  • !wget https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
    
  • run request
  • import json
    from typing import List
    import requests as r
    import base64
    
    ENDPOINT_URL = ""
    HF_TOKEN = ""
    
    
    def predict(path_to_image: str = None, candiates: List[str] = None):
        with open(path_to_image, "rb") as i:
            b64 = base64.b64encode(i.read())
    
        payload = {"inputs": {"image": b64.decode("utf-8"), "candiates": candiates}}
        response = r.post(
            ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
        )
        return response.json()
    
    
    prediction = predict(
        path_to_image="palace.jpg", candiates=["sea", "palace", "car", "ship"]
    )
    

    expected output

    [{'label': 'palace', 'score': 0.9996134638786316},
     {'label': 'car', 'score': 0.0002602009626571089},
     {'label': 'ship', 'score': 0.00011758189066313207},
     {'label': 'sea', 'score': 8.666840585647151e-06}]