英文

bart-large-cnn-samsum

如果您想使用模型,您应该尝试使用更新的经过优化的FLAN-T5版本 philschmid/flan-t5-base-samsum ,该版本在 ROGUE1 上得分为 +6,达到 47.24 。

尝试 philschmid/flan-t5-base-samsum

此模型是使用Amazon SageMaker和新的Hugging Face深度学习容器进行训练的。

了解更多信息,请参阅:

超参数

{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_predict": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-large-cnn",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 4,
    "predict_with_generate": true,
    "seed": 7
}

用法

from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")

conversation = '''Jeff: Can I train a ? Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
summarizer(conversation)

结果

key value
eval_rouge1 42.621
eval_rouge2 21.9825
eval_rougeL 33.034
eval_rougeLsum 39.6783
test_rouge1 41.3174
test_rouge2 20.8716
test_rougeL 32.1337
test_rougeLsum 38.4149