如果您想使用模型,您应该尝试使用更新的经过优化的FLAN-T5版本 philschmid/flan-t5-base-samsum ,该版本在 ROGUE1 上得分为 +6,达到 47.24 。
此模型是使用Amazon SageMaker和新的Hugging Face深度学习容器进行训练的。
了解更多信息,请参阅:
{ "dataset_name": "samsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "facebook/bart-large-cnn", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "seed": 7 }
from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum") conversation = '''Jeff: Can I train a ? Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' summarizer(conversation)
key | value |
---|---|
eval_rouge1 | 42.621 |
eval_rouge2 | 21.9825 |
eval_rougeL | 33.034 |
eval_rougeLsum | 39.6783 |
test_rouge1 | 41.3174 |
test_rouge2 | 20.8716 |
test_rougeL | 32.1337 |
test_rougeLsum | 38.4149 |