模型:
philschmid/bart-base-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
You can find the notebook here and the referring blog post here .
For more information look at:
{
"dataset_name": "samsum",
"do_eval": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "facebook/bart-base",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 8,
"per_device_train_batch_size": 8,
"seed": 7
}
| key | value |
|---|---|
| epoch | 3 |
| init_mem_cpu_alloc_delta | 180190 |
| init_mem_cpu_peaked_delta | 18282 |
| init_mem_gpu_alloc_delta | 558658048 |
| init_mem_gpu_peaked_delta | 0 |
| train_mem_cpu_alloc_delta | 6658519 |
| train_mem_cpu_peaked_delta | 642937 |
| train_mem_gpu_alloc_delta | 2267624448 |
| train_mem_gpu_peaked_delta | 10355728896 |
| train_runtime | 98.4931 |
| train_samples | 14732 |
| train_samples_per_second | 3.533 |
| key | value |
|---|---|
| epoch | 3 |
| eval_loss | 1.5356481075286865 |
| eval_mem_cpu_alloc_delta | 659047 |
| eval_mem_cpu_peaked_delta | 18254 |
| eval_mem_gpu_alloc_delta | 0 |
| eval_mem_gpu_peaked_delta | 300285440 |
| eval_runtime | 0.3116 |
| eval_samples | 818 |
| eval_samples_per_second | 2625.337 |
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-base-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)