模型:
persiannlp/wikibert-base-parsinlu-multiple-choice
任务:
文本分类许可:
cc-by-nc-sa-4.0This is a wikibert-based model for multiple-choice question answering. Here is an example of how you can run this model:
from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"])
For more details, visit this page: https://github.com/persiannlp/parsinlu/