模型:
nvidia/stt_de_conformer_ctc_large
| | | | |
This model transcribes speech in lowercase German alphabet including spaces, and is trained on several thousand hours of German speech data. It is a non-autoregressive "large" variant of Conformer, with around 120 million parameters. See the model architecture section and NeMo documentation for complete architecture details. It is also compatible with NVIDIA Riva for production-grade server deployments .
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
To train, fine-tune or play with the model you will need to install NVIDIA NeMo . We recommend you install it after you've installed latest PyTorch version.
pip install nemo_toolkit['all']
import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("nvidia/stt_de_conformer_ctc_large")
First, let's get a sample
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
Then simply do:
asr_model.transcribe(['2086-149220-0033.wav'])
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="nvidia/stt_de_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
This model accepts 16000 kHz Mono-channel Audio (wav files) as input.
This model provides transcribed speech as a string for a given audio sample.
Conformer-CTC model is a non-autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses CTC loss/decoding instead of Transducer. You may find more info on the detail of this model here: Conformer-CTC Model .
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this example script and this base config .
The tokenizers for these models were built using the text transcripts of the train set with this script .
All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:
Note: older versions of the model may have trained on smaller set of datasets.
The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
Version | Tokenizer | Vocabulary Size | MCV7.0 dev | MCV7.0 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test |
---|---|---|---|---|---|---|---|---|
1.5.0 | SentencePiece Unigram | 128 | 5.84 | 6.68 | 3.85 | 4.63 | 12.56 | 10.51 |
Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
For the best real-time accuracy, latency, and throughput, deploy the model with NVIDIA Riva , an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, at the edge, and embedded. Additionally, Riva provides:
Check out Riva live demo .