模型:
nickmuchi/yolos-small-finetuned-license-plate-detection
This model is a fine-tuned version of hustvl/yolos-small on the licesne-plate-recognition dataset from Roboflow which contains 5200 images in the training set and 380 in the validation set. The original YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images).
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
You can use the raw model for object detection. See the model hub to look for all available YOLOS models.
Here is how to use this model:
from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection') model = YolosForObjectDetection.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding face mask detection classes logits = outputs.logits bboxes = outputs.pred_boxes
Currently, both the feature extractor and model support PyTorch.
The YOLOS model was pre-trained on ImageNet-1k and fine-tuned on COCO 2017 object detection , a dataset consisting of 118k/5k annotated images for training/validation respectively.
This model was fine-tuned for 200 epochs on the licesne-plate-recognition .
This model achieves an AP (average precision) of 49.0 .
Accumulating evaluation results...
IoU metric: bbox
Metrics | Metric Parameter | Location | Dets | Value |
---|---|---|---|---|
Average Precision | (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.490 |
Average Precision | (AP) @[ IoU=0.50 | area= all | maxDets=100 ] | 0.792 |
Average Precision | (AP) @[ IoU=0.75 | area= all | maxDets=100 ] | 0.585 |
Average Precision | (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.167 |
Average Precision | (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.460 |
Average Precision | (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.824 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] | 0.447 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] | 0.671 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.676 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.278 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.641 |
Average Recall | (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.890 |