模型:
nguyenvulebinh/wav2vec2-base-vi
语言:
vi许可:
cc-by-nc-4.0We use wav2vec2 architecture for doing Self-Supervised learning
Our self-supervised model is pre-trained on a massive audio set of 13k hours of Vietnamese youtube audio, which includes:
We have already upload our pre-trained model to the Huggingface. The base model trained 35 epochs and the large model trained 20 epochs in about 30 days using TPU V3-8.
from transformers import Wav2Vec2ForPreTraining, Wav2Vec2Processor model_name = 'nguyenvulebinh/wav2vec2-base-vi' # model_name = 'nguyenvulebinh/wav2vec2-large-vi' model = Wav2Vec2ForPreTraining.from_pretrained(model_name) processor = Wav2Vec2Processor.from_pretrained(model_name)
Since our model has the same architecture as the English wav2vec2 version, you can use this notebook for more information on how to fine-tune the model.
Benchmark WER result on VLSP T1 testset:
base model | large model | |
---|---|---|
without LM | 8.66 | 6.90 |
with 5-grams LM | 6.53 | 5.32 |
Usage
#pytorch #!pip install transformers==4.20.0 #!pip install https://github.com/kpu/kenlm/archive/master.zip #!pip install pyctcdecode==0.4.0 from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/wav2vec2-base-vi-vlsp2020" # model_name = "nguyenvulebinh/wav2vec2-large-vi-vlsp2020" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="t2_0000006682.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text)
nguyenvulebinh@gmail.com / binh@vietai.org