模型:
mrm8488/spanish-t5-small-sqac-for-qa
spanish-T5-small fine-tuned on SQAC for Q&A downstream task.
T5 (small) like arch trained from scatch on large_spanish_corpus for HuggingFace/Flax/Jax Week .
This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment. The sources of the contexts are:
Metric | # Value |
---|---|
BLEU | 41.94 |
from transformers import T5ForConditionalGeneration, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ckpt = 'mrm8488/spanish-t5-small-sqac-for-qa' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = T5ForConditionalGeneration.from_pretrained(ckpt).to(device) def get_answer(question, context): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text ], padding='max_length', truncation=True, max_length=512, return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device)) return tokenizer.decode(output[0], skip_special_tokens=True) context = ''' La ex codirectora del grupo de investigación de IA ética de Google, Margaret Mitchell, quien fue despedida en febrero después de una controversia sobre un artículo crítico del que fue coautora, se unirá a HuggingFace para ayudar a que los algoritmos de IA sean más justos. ''' question = '¿Qué hará Margaret Mitchell en HuggingFace?' print(get_answer(context, question)) # ayudar a que los algoritmos de ia sean más justos
Created by Manuel Romero/@mrm8488 with the support of Narrativa
Made with ♥ in Spain