This is a sentence-transformers model (distiluse-base-multilingual-cased-v2): It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"] model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es') embeddings = model.encode(sentences) print(embeddings)
Without sentence-transformers , you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Nerea va a comprar un cuadro usando bitcoins", "Se puede comprar arte con bitcoins"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es') model = AutoModel.from_pretrained('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
from datasets import load_dataset from sentence_transformers import SentenceTransformer, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator test_data = load_dataset('stsb_multi_mt', 'es', split='test') test_data = test_data.rename_columns({'similarity_score': 'label'}) test_data = test_data.map(lambda x: {'label': x['label'] / 5.0}) samples = [] for sample in test_data: samples.append(InputExample( texts=[sample['sentence1'], sample['sentence2']], label=sample['label'] )) evaluator = EmbeddingSimilarityEvaluator.from_input_examples( samples, write_csv=False ) model = SentenceTransformer('mrm8488/distiluse-base-multilingual-cased-v2-finetuned-stsb_multi_mt-es') evaluator(model) # It outputs: 0.7604056195656299
Spearman’s rank correlation: 0.7604056195656299
For an automated evaluation of this model, see the Sentence Embeddings Benchmark : https://seb.sbert.net
The model was trained with the parameters:
DataLoader :
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader of length 906 with parameters:
{'batch_size': 16}
Loss :
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{ "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 271, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )