模型:
mrm8488/bert-spanish-cased-finetuned-ner
This model is a fine-tuned on NER-C version of the Spanish BERT cased (BETO) for NER downstream task.
I preprocessed the dataset and split it as train / dev (80/20)
Dataset | # Examples |
---|---|
Train | 8.7 K |
Dev | 2.2 K |
Labels covered:
B-LOC B-MISC B-ORG B-PER I-LOC I-MISC I-ORG I-PER O
Metric | # score |
---|---|
F1 | 90.17 |
Precision | 89.86 |
Recall | 90.47 |
Model | # F1 score | Size(MB) |
---|---|---|
bert-base-spanish-wwm-cased (BETO) | 88.43 | 421 |
bert-spanish-cased-finetuned-ner (this one) | 90.17 | 420 |
Best Multilingual BERT | 87.38 | 681 |
TinyBERT-spanish-uncased-finetuned-ner | 70.00 | 55 |
Fast usage with pipelines :
from transformers import pipeline nlp_ner = pipeline( "ner", model="mrm8488/bert-spanish-cased-finetuned-ner", tokenizer=( 'mrm8488/bert-spanish-cased-finetuned-ner', {"use_fast": False} )) text = 'Mis amigos están pensando viajar a Londres este verano' nlp_ner(text) #Output: [{'entity': 'B-LOC', 'score': 0.9998720288276672, 'word': 'Londres'}]
Created by Manuel Romero/@mrm8488
Made with ♥ in Spain