模型:
monologg/koelectra-base-v2-discriminator
Pretrained ELECTRA Language Model for Korean ( koelectra-base-v2-discriminator )
For more detail, please see original repository .
>>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator")
>>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3]
import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v2-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator") sentence = "나는 방금 밥을 먹었다." fake_sentence = "나는 내일 밥을 먹었다." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1])))