模型:
malay-huggingface/bert-tiny-bahasa-cased
Pretrained BERT tiny language model for Malay.
bert-tiny-bahasa-cased model was pretrained on ~1.4 Billion words. Below is list of data we trained on,
You can use this model by installing torch or tensorflow and Huggingface library transformers . And you can use it directly by initializing it like this:
from transformers import BertTokenizer, BertModel
model = BertModel.from_pretrained('malay-huggingface/bert-tiny-bahasa-cased')
tokenizer = BertTokenizer.from_pretrained(
'malay-huggingface/bert-tiny-bahasa-cased',
do_lower_case = False,
)
from transformers import BertTokenizer, BertForMaskedLM, pipeline
model = BertForMaskedLM.from_pretrained('malay-huggingface/bert-tiny-bahasa-cased')
tokenizer = BertTokenizer.from_pretrained(
'malay-huggingface/bert-tiny-bahasa-cased',
do_lower_case = False,
)
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
fill_mask('Permohonan Najib, anak untuk dengar isu perlembagaan [MASK] .')
Output is,
[{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan Malaysia.',
'score': 0.09178723394870758,
'token': 1957,
'token_str': 'M a l a y s i a'},
{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan negara.',
'score': 0.053524162620306015,
'token': 2134,
'token_str': 'n e g a r a'},
{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan dikemukakan.',
'score': 0.031137527897953987,
'token': 9383,
'token_str': 'd i k e m u k a k a n'},
{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan 1MDB.',
'score': 0.02826082520186901,
'token': 13838,
'token_str': '1 M D B'},
{'sequence': 'Permohonan Najib, anak untuk dengar isu perlembagaan ditolak.',
'score': 0.026568090543150902,
'token': 11465,
'token_str': 'd i t o l a k'}]