中文

Model Card of lmqg/mt5-small-ruquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_ruquad (dataset_name: default) via lmqg .

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-small-ruquad-qg")

# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")

Evaluation

Score Type Dataset
BERTScore 84.27 default lmqg/qg_ruquad
Bleu_1 31.03 default lmqg/qg_ruquad
Bleu_2 24.58 default lmqg/qg_ruquad
Bleu_3 19.92 default lmqg/qg_ruquad
Bleu_4 16.31 default lmqg/qg_ruquad
METEOR 26.39 default lmqg/qg_ruquad
MoverScore 62.49 default lmqg/qg_ruquad
ROUGE_L 31.39 default lmqg/qg_ruquad
  • Metric (Question & Answer Generation, Reference Answer) : Each question is generated from the gold answer . raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 90.17 default lmqg/qg_ruquad
QAAlignedF1Score (MoverScore) 68.22 default lmqg/qg_ruquad
QAAlignedPrecision (BERTScore) 90.17 default lmqg/qg_ruquad
QAAlignedPrecision (MoverScore) 68.23 default lmqg/qg_ruquad
QAAlignedRecall (BERTScore) 90.16 default lmqg/qg_ruquad
QAAlignedRecall (MoverScore) 68.21 default lmqg/qg_ruquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 76.96 default lmqg/qg_ruquad
QAAlignedF1Score (MoverScore) 55.53 default lmqg/qg_ruquad
QAAlignedPrecision (BERTScore) 73.41 default lmqg/qg_ruquad
QAAlignedPrecision (MoverScore) 53.24 default lmqg/qg_ruquad
QAAlignedRecall (BERTScore) 81.05 default lmqg/qg_ruquad
QAAlignedRecall (MoverScore) 58.25 default lmqg/qg_ruquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_ruquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 5
  • batch: 64
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file .

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}