模型:
lmqg/mt5-small-koquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_koquad (dataset_name: default) via lmqg .
from lmqg import TransformersQG # initialize model model = TransformersQG(language="ko", model="lmqg/mt5-small-koquad-qg") # model prediction questions = model.generate_q(list_context="1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.", list_answer="남부군")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-koquad-qg") output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 82.89 | default | lmqg/qg_koquad |
Bleu_1 | 25.31 | default | lmqg/qg_koquad |
Bleu_2 | 18.59 | default | lmqg/qg_koquad |
Bleu_3 | 13.98 | default | lmqg/qg_koquad |
Bleu_4 | 10.57 | default | lmqg/qg_koquad |
METEOR | 27.52 | default | lmqg/qg_koquad |
MoverScore | 82.49 | default | lmqg/qg_koquad |
ROUGE_L | 25.64 | default | lmqg/qg_koquad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 87.52 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 85.15 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 87.57 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 85.23 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 87.49 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 85.09 | default | lmqg/qg_koquad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 80.52 | default | lmqg/qg_koquad |
QAAlignedF1Score (MoverScore) | 82.95 | default | lmqg/qg_koquad |
QAAlignedPrecision (BERTScore) | 77.56 | default | lmqg/qg_koquad |
QAAlignedPrecision (MoverScore) | 79.39 | default | lmqg/qg_koquad |
QAAlignedRecall (BERTScore) | 83.8 | default | lmqg/qg_koquad |
QAAlignedRecall (MoverScore) | 87.02 | default | lmqg/qg_koquad |
The following hyperparameters were used during fine-tuning:
The full configuration can be found at fine-tuning config file .
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }