模型:
lmqg/mt5-small-itquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_itquad (dataset_name: default) via lmqg .
from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qg") # model prediction questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971")
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qg")
output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
| Score | Type | Dataset | |
|---|---|---|---|
| BERTScore | 80.8 | default | lmqg/qg_itquad |
| Bleu_1 | 22.78 | default | lmqg/qg_itquad |
| Bleu_2 | 14.93 | default | lmqg/qg_itquad |
| Bleu_3 | 10.34 | default | lmqg/qg_itquad |
| Bleu_4 | 7.37 | default | lmqg/qg_itquad |
| METEOR | 17.57 | default | lmqg/qg_itquad |
| MoverScore | 56.79 | default | lmqg/qg_itquad |
| ROUGE_L | 21.93 | default | lmqg/qg_itquad |
| Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 87.66 | default | lmqg/qg_itquad |
| QAAlignedF1Score (MoverScore) | 61.6 | default | lmqg/qg_itquad |
| QAAlignedPrecision (BERTScore) | 87.76 | default | lmqg/qg_itquad |
| QAAlignedPrecision (MoverScore) | 61.73 | default | lmqg/qg_itquad |
| QAAlignedRecall (BERTScore) | 87.57 | default | lmqg/qg_itquad |
| QAAlignedRecall (MoverScore) | 61.48 | default | lmqg/qg_itquad |
| Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 81.63 | default | lmqg/qg_itquad |
| QAAlignedF1Score (MoverScore) | 55.85 | default | lmqg/qg_itquad |
| QAAlignedPrecision (BERTScore) | 81.04 | default | lmqg/qg_itquad |
| QAAlignedPrecision (MoverScore) | 55.6 | default | lmqg/qg_itquad |
| QAAlignedRecall (BERTScore) | 82.28 | default | lmqg/qg_itquad |
| QAAlignedRecall (MoverScore) | 56.14 | default | lmqg/qg_itquad |
The following hyperparameters were used during fine-tuning:
The full configuration can be found at fine-tuning config file .
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}