中文

Model Card of lmqg/mt5-small-itquad-qag

This model is fine-tuned version of google/mt5-small for question & answer pair generation task on the lmqg/qag_itquad (dataset_name: default) via lmqg .

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="it", model="lmqg/mt5-small-itquad-qag")

# model prediction
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-itquad-qag")
output = pipe("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 79.41 default lmqg/qag_itquad
QAAlignedF1Score (MoverScore) 54.15 default lmqg/qag_itquad
QAAlignedPrecision (BERTScore) 81.16 default lmqg/qag_itquad
QAAlignedPrecision (MoverScore) 55.49 default lmqg/qag_itquad
QAAlignedRecall (BERTScore) 77.79 default lmqg/qag_itquad
QAAlignedRecall (MoverScore) 52.94 default lmqg/qag_itquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_itquad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 256
  • epoch: 17
  • batch: 8
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 8
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file .

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}