模型:
lmqg/mt5-small-esquad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg .
from lmqg import TransformersQG # initialize model model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg") # model prediction questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg") output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 84.07 | default | lmqg/qg_esquad |
Bleu_1 | 26.03 | default | lmqg/qg_esquad |
Bleu_2 | 17.75 | default | lmqg/qg_esquad |
Bleu_3 | 12.88 | default | lmqg/qg_esquad |
Bleu_4 | 9.61 | default | lmqg/qg_esquad |
METEOR | 22.71 | default | lmqg/qg_esquad |
MoverScore | 59.06 | default | lmqg/qg_esquad |
ROUGE_L | 24.62 | default | lmqg/qg_esquad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 89.43 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 63.73 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 89.44 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 63.75 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 89.41 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 63.72 | default | lmqg/qg_esquad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 79.89 | default | lmqg/qg_esquad |
QAAlignedF1Score (MoverScore) | 54.82 | default | lmqg/qg_esquad |
QAAlignedPrecision (BERTScore) | 77.46 | default | lmqg/qg_esquad |
QAAlignedPrecision (MoverScore) | 53.31 | default | lmqg/qg_esquad |
QAAlignedRecall (BERTScore) | 82.56 | default | lmqg/qg_esquad |
QAAlignedRecall (MoverScore) | 56.52 | default | lmqg/qg_esquad |
The following hyperparameters were used during fine-tuning:
The full configuration can be found at fine-tuning config file .
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }