中文

Model Card of lmqg/mt5-small-esquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg .

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.07 default lmqg/qg_esquad
Bleu_1 26.03 default lmqg/qg_esquad
Bleu_2 17.75 default lmqg/qg_esquad
Bleu_3 12.88 default lmqg/qg_esquad
Bleu_4 9.61 default lmqg/qg_esquad
METEOR 22.71 default lmqg/qg_esquad
MoverScore 59.06 default lmqg/qg_esquad
ROUGE_L 24.62 default lmqg/qg_esquad
  • Metric (Question & Answer Generation, Reference Answer) : Each question is generated from the gold answer . raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 89.43 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 63.73 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 89.44 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 63.75 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 89.41 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 63.72 default lmqg/qg_esquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 79.89 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 54.82 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 77.46 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 53.31 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 82.56 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 56.52 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 16
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file .

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}