模型:
lmqg/mt5-small-esquad-qag
This model is fine-tuned version of google/mt5-small for question & answer pair generation task on the lmqg/qag_esquad (dataset_name: default) via lmqg .
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qag")
# model prediction
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qag")
output = pipe("del Ministerio de Desarrollo Urbano , Gobierno de la India.")
| Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 78.12 | default | lmqg/qag_esquad |
| QAAlignedF1Score (MoverScore) | 53.92 | default | lmqg/qag_esquad |
| QAAlignedPrecision (BERTScore) | 78 | default | lmqg/qag_esquad |
| QAAlignedPrecision (MoverScore) | 53.93 | default | lmqg/qag_esquad |
| QAAlignedRecall (BERTScore) | 78.27 | default | lmqg/qag_esquad |
| QAAlignedRecall (MoverScore) | 53.93 | default | lmqg/qag_esquad |
The following hyperparameters were used during fine-tuning:
The full configuration can be found at fine-tuning config file .
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}