模型:
lmqg/mt5-small-dequad-qg
This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_dequad (dataset_name: default) via lmqg .
from lmqg import TransformersQG # initialize model model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qg") # model prediction questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qg") output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 79.9 | default | lmqg/qg_dequad |
Bleu_1 | 10.18 | default | lmqg/qg_dequad |
Bleu_2 | 4.02 | default | lmqg/qg_dequad |
Bleu_3 | 1.6 | default | lmqg/qg_dequad |
Bleu_4 | 0.43 | default | lmqg/qg_dequad |
METEOR | 11.47 | default | lmqg/qg_dequad |
MoverScore | 54.64 | default | lmqg/qg_dequad |
ROUGE_L | 10.08 | default | lmqg/qg_dequad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 90.55 | default | lmqg/qg_dequad |
QAAlignedF1Score (MoverScore) | 64.33 | default | lmqg/qg_dequad |
QAAlignedPrecision (BERTScore) | 90.59 | default | lmqg/qg_dequad |
QAAlignedPrecision (MoverScore) | 64.37 | default | lmqg/qg_dequad |
QAAlignedRecall (BERTScore) | 90.51 | default | lmqg/qg_dequad |
QAAlignedRecall (MoverScore) | 64.29 | default | lmqg/qg_dequad |
Score | Type | Dataset | |
---|---|---|---|
QAAlignedF1Score (BERTScore) | 81.19 | default | lmqg/qg_dequad |
QAAlignedF1Score (MoverScore) | 54.3 | default | lmqg/qg_dequad |
QAAlignedPrecision (BERTScore) | 80 | default | lmqg/qg_dequad |
QAAlignedPrecision (MoverScore) | 54.04 | default | lmqg/qg_dequad |
QAAlignedRecall (BERTScore) | 82.46 | default | lmqg/qg_dequad |
QAAlignedRecall (MoverScore) | 54.59 | default | lmqg/qg_dequad |
The following hyperparameters were used during fine-tuning:
The full configuration can be found at fine-tuning config file .
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }