模型:
lighteternal/SSE-TUC-mt-en-el-cased
Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\ BPE segmentation (20k codes).\ Mixed-case model.
from transformers import FSMTTokenizer, FSMTForConditionalGeneration mname = "lighteternal/SSE-TUC-mt-en-el-cased" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) text = " 'Katerina', is the best name for a girl." encoded = tokenizer.encode(text, return_tensors='pt') outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True) for i, output in enumerate(outputs): i += 1 print(f"{i}: {output.tolist()}") decoded = tokenizer.decode(output, skip_special_tokens=True) print(f"{i}: {decoded}")
Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)
Results on Tatoeba testset (EN-EL):
BLEU | chrF |
---|---|
76.9 | 0.733 |
Results on XNLI parallel (EN-EL):
BLEU | chrF |
---|---|
65.4 | 0.624 |
Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)