模型:

l3cube-pune/hindi-sentence-similarity-sbert

中文

HindSBERT-STS

This is a HindSBERT model ( l3cube-pune/hindi-sentence-bert-nli ) fine-tuned on the STS dataset. Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP A multilingual version of this model supporting major Indic languages and cross-lingual sentence similarity is shared here indic-sentence-similarity-sbert

More details on the dataset, models, and baseline results can be found in our [paper] ( https://arxiv.org/abs/2211.11187 )

@article{joshi2022l3cubemahasbert,
  title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
  author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
  journal={arXiv preprint arXiv:2211.11187},
  year={2022}
}

monolingual Indic SBERT paper multilingual Indic SBERT paper

Other Monolingual similarity models are listed below: Marathi Similarity Hindi Similarity Kannada Similarity Telugu Similarity Malayalam Similarity Tamil Similarity Gujarati Similarity Oriya Similarity Bengali Similarity Punjabi Similarity Indic Similarity (multilingual)

Other Monolingual Indic sentence BERT models are listed below: Marathi SBERT Hindi SBERT Kannada SBERT Telugu SBERT Malayalam SBERT Tamil SBERT Gujarati SBERT Oriya SBERT Bengali SBERT Punjabi SBERT Indic SBERT (multilingual)

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers , you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)