模型:
keremberke/yolov8n-shoe-classification
['adidas', 'converse', 'nike']
pip install ultralyticsplus==0.0.24 ultralytics==8.0.23
from ultralyticsplus import YOLO, postprocess_classify_output # load model model = YOLO('keremberke/yolov8n-shoe-classification') # set model parameters model.overrides['conf'] = 0.25 # model confidence threshold # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].probs) # [0.1, 0.2, 0.3, 0.4] processed_result = postprocess_classify_output(model, result=results[0]) print(processed_result) # {"cat": 0.4, "dog": 0.6}
More models available at: awesome-yolov8-models