模型:
h2oai/h2ogpt-oig-oasst1-512-6_9b
任务:
文本生成数据集:
h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1 h2oai/openassistant_oasst1_h2ogpt h2oai/h2ogpt-fortune2000-personalized h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v3 3Ah2oai/h2ogpt-oig-oasst1-instruct-cleaned-v3 3Ah2oai/h2ogpt-fortune2000-personalized 3Ah2oai/openassistant_oasst1_h2ogpt 3Ah2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1语言:
en其他:
gpt_neox gpt llm large language model open-source large+language+model text-generation-inference许可:
apache-2.0H2O.ai 的 h2ogpt-oig-oasst1-512-6_9b 是一种69亿参数的用于商业用途的大型指令遵循语言模型。
要在带有GPU的计算机上使用transformers库来使用该模型,请确保您已安装transformers和accelerate库。
pip install transformers==4.28.1 pip install accelerate==0.18.0
import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-512-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type='human_bot') res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
或者,如果您不想使用trust_remote_code=True,您可以下载 instruct_pipeline.py 并将其存储在与您的笔记本相同的位置,然后根据加载的模型和分词器构建自己的管道:
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6_9b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6_9b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot') res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50432, 4096) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=4096, out_features=12288, bias=True) (dense): Linear(in_features=4096, out_features=4096, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True) (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=4096, out_features=50432, bias=False) )
GPTNeoXConfig { "_name_or_path": "h2oai/h2ogpt-oig-oasst1-512-6_9b", "architectures": [ "GPTNeoXForCausalLM" ], "bos_token_id": 0, "custom_pipeline": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 0, "hidden_act": "gelu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 16384, "layer_norm_eps": 1e-05, "max_position_embeddings": 2048, "model_type": "gpt_neox", "num_attention_heads": 32, "num_hidden_layers": 32, "rotary_emb_base": 10000, "rotary_pct": 0.25, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "use_parallel_residual": true, "vocab_size": 50432 }
使用 EleutherAI lm-evaluation-harness 进行模型验证。
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_easy | 0 | acc | 0.6591 | ± | 0.0097 |
acc_norm | 0.6178 | ± | 0.0100 | ||
arc_challenge | 0 | acc | 0.3174 | ± | 0.0136 |
acc_norm | 0.3558 | ± | 0.0140 | ||
openbookqa | 0 | acc | 0.2540 | ± | 0.0195 |
acc_norm | 0.3580 | ± | 0.0215 | ||
winogrande | 0 | acc | 0.6069 | ± | 0.0137 |
piqa | 0 | acc | 0.7486 | ± | 0.0101 |
acc_norm | 0.7546 | ± | 0.0100 | ||
hellaswag | 0 | acc | 0.4843 | ± | 0.0050 |
acc_norm | 0.6388 | ± | 0.0048 | ||
boolq | 1 | acc | 0.6193 | ± | 0.0085 |
在使用此存储库中提供的大型语言模型之前,请仔细阅读本免责声明。您对该模型的使用表示您同意以下条款和条件。
通过使用本存储库提供的大型语言模型,您同意接受并遵守本免责声明中概述的条款和条件。如果您不同意本免责声明的任何部分,您应避免使用该模型和由其生成的任何内容。