模型:
h2oai/h2ogpt-oig-oasst1-512-6_9b
任务:
数据集:
h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1 h2oai/openassistant_oasst1_h2ogpt h2oai/h2ogpt-fortune2000-personalized h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v3 3Ah2oai/h2ogpt-oig-oasst1-instruct-cleaned-v3 3Ah2oai/h2ogpt-fortune2000-personalized 3Ah2oai/openassistant_oasst1_h2ogpt 3Ah2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1语言:
其他:
gpt_neox gpt llm large language model open-source large+language+model text-generation-inference许可:
H2O.ai 的 h2ogpt-oig-oasst1-512-6_9b 是一种69亿参数的用于商业用途的大型指令遵循语言模型。
要在带有GPU的计算机上使用transformers库来使用该模型,请确保您已安装transformers和accelerate库。
pip install transformers==4.28.1 pip install accelerate==0.18.0
import torch
from transformers import pipeline
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-512-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
或者,如果您不想使用trust_remote_code=True,您可以下载 instruct_pipeline.py 并将其存储在与您的笔记本相同的位置,然后根据加载的模型和分词器构建自己的管道:
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6_9b", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-512-6_9b", torch_dtype=torch.bfloat16, device_map="auto")
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
GPTNeoXForCausalLM(
(gpt_neox): GPTNeoXModel(
(embed_in): Embedding(50432, 4096)
(layers): ModuleList(
(0-31): 32 x GPTNeoXLayer(
(input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(attention): GPTNeoXAttention(
(rotary_emb): RotaryEmbedding()
(query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
(dense): Linear(in_features=4096, out_features=4096, bias=True)
)
(mlp): GPTNeoXMLP(
(dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
(dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
(act): GELUActivation()
)
)
)
(final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
)
(embed_out): Linear(in_features=4096, out_features=50432, bias=False)
)
GPTNeoXConfig {
"_name_or_path": "h2oai/h2ogpt-oig-oasst1-512-6_9b",
"architectures": [
"GPTNeoXForCausalLM"
],
"bos_token_id": 0,
"custom_pipeline": {
"text-generation": {
"impl": "h2oai_pipeline.H2OTextGenerationPipeline",
"pt": "AutoModelForCausalLM"
}
},
"eos_token_id": 0,
"hidden_act": "gelu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 16384,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 2048,
"model_type": "gpt_neox",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"rotary_emb_base": 10000,
"rotary_pct": 0.25,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.28.1",
"use_cache": true,
"use_parallel_residual": true,
"vocab_size": 50432
}
使用 EleutherAI lm-evaluation-harness 进行模型验证。
| Task | Version | Metric | Value | Stderr | |
|---|---|---|---|---|---|
| arc_easy | 0 | acc | 0.6591 | ± | 0.0097 |
| acc_norm | 0.6178 | ± | 0.0100 | ||
| arc_challenge | 0 | acc | 0.3174 | ± | 0.0136 |
| acc_norm | 0.3558 | ± | 0.0140 | ||
| openbookqa | 0 | acc | 0.2540 | ± | 0.0195 |
| acc_norm | 0.3580 | ± | 0.0215 | ||
| winogrande | 0 | acc | 0.6069 | ± | 0.0137 |
| piqa | 0 | acc | 0.7486 | ± | 0.0101 |
| acc_norm | 0.7546 | ± | 0.0100 | ||
| hellaswag | 0 | acc | 0.4843 | ± | 0.0050 |
| acc_norm | 0.6388 | ± | 0.0048 | ||
| boolq | 1 | acc | 0.6193 | ± | 0.0085 |
在使用此存储库中提供的大型语言模型之前,请仔细阅读本免责声明。您对该模型的使用表示您同意以下条款和条件。
通过使用本存储库提供的大型语言模型,您同意接受并遵守本免责声明中概述的条款和条件。如果您不同意本免责声明的任何部分,您应避免使用该模型和由其生成的任何内容。