模型:
h2oai/h2ogpt-oig-oasst1-256-6_9b
H2O.ai's h2ogpt-oig-oasst1-256-6_9b is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
To use the model with the transformers library on a machine with GPUs, first make sure you have the transformers and accelerate libraries installed.
pip install transformers==4.28.1 pip install accelerate==0.18.0
import torch from transformers import pipeline generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type='human_bot') res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
Alternatively, if you prefer to not use trust_remote_code=True you can download instruct_pipeline.py , store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", padding_side="left") model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, device_map="auto") generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot') res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) print(res[0]["generated_text"])
GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50432, 4096) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=4096, out_features=12288, bias=True) (dense): Linear(in_features=4096, out_features=4096, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True) (dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=4096, out_features=50432, bias=False) )
GPTNeoXConfig { "_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6_9b", "architectures": [ "GPTNeoXForCausalLM" ], "bos_token_id": 0, "custom_pipelines": { "text-generation": { "impl": "h2oai_pipeline.H2OTextGenerationPipeline", "pt": "AutoModelForCausalLM" } }, "eos_token_id": 0, "hidden_act": "gelu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 16384, "layer_norm_eps": 1e-05, "max_position_embeddings": 2048, "model_type": "gpt_neox", "num_attention_heads": 32, "num_hidden_layers": 32, "rotary_emb_base": 10000, "rotary_pct": 0.25, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.28.1", "use_cache": true, "use_parallel_residual": true, "vocab_size": 50432 }