模型:
flax-sentence-embeddings/st-codesearch-distilroberta-base
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It was trained on the code_search_net dataset and can be used to search program code given text.
from sentence_transformers import SentenceTransformer, util #This list the defines the different programm codes code = ["""def sort_list(x): return sorted(x)""", """def count_above_threshold(elements, threshold=0): counter = 0 for e in elements: if e > threshold: counter += 1 return counter""", """def find_min_max(elements): min_ele = 99999 max_ele = -99999 for e in elements: if e < min_ele: min_ele = e if e > max_ele: max_ele = e return min_ele, max_ele"""] model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base") # Encode our code into the vector space code_emb = model.encode(code, convert_to_tensor=True) # Interactive demo: Enter queries, and the method returns the best function from the # 3 functions we defined while True: query = input("Query: ") query_emb = model.encode(query, convert_to_tensor=True) hits = util.semantic_search(query_emb, code_emb)[0] top_hit = hits[0] print("Cossim: {:.2f}".format(top_hit['score'])) print(code[top_hit['corpus_id']]) print("\n\n")
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base') embeddings = model.encode(sentences) print(embeddings)
The model was trained with a DistilRoBERTa-base model for 10k training steps on the codesearch dataset with batch_size 256 and MultipleNegativesRankingLoss.
It is some preliminary model. It was neither tested nor was the trained quite sophisticated
The model was trained with the parameters:
DataLoader :
MultiDatasetDataLoader.MultiDatasetDataLoader of length 5371 with parameters:
{'batch_size': 256}
Loss :
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:
{'scale': 20, 'similarity_fct': 'dot_score'}
Parameters of the fit()-Method:
{ "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "warmupconstant", "steps_per_epoch": 10000, "warmup_steps": 500, "weight_decay": 0.01 }
SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() )