模型:
flair/upos-multi
This is the default multilingual universal part-of-speech tagging model that ships with Flair .
F1-Score: 98,47 (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech)
Predicts universal POS tags:
tag | meaning |
---|---|
ADJ | adjective |
ADP | adposition |
ADV | adverb |
AUX | auxiliary |
CCONJ | coordinating conjunction |
DET | determiner |
INTJ | interjection |
NOUN | noun |
NUM | numeral |
PART | particle |
PRON | pronoun |
PROPN | proper noun |
PUNCT | punctuation |
SCONJ | subordinating conjunction |
SYM | symbol |
VERB | verb |
X | other |
Based on Flair embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/upos-multi") # make example sentence sentence = Sentence("Ich liebe Berlin, as they say. ") # predict POS tags tagger.predict(sentence) # print sentence print(sentence) # iterate over tokens and print the predicted POS label print("The following POS tags are found:") for token in sentence: print(token.get_label("upos"))
This yields the following output:
Token[0]: "Ich" → PRON (0.9999) Token[1]: "liebe" → VERB (0.9999) Token[2]: "Berlin" → PROPN (0.9997) Token[3]: "," → PUNCT (1.0) Token[4]: "as" → SCONJ (0.9991) Token[5]: "they" → PRON (0.9998) Token[6]: "say" → VERB (0.9998) Token[7]: "." → PUNCT (1.0)
So, the words " Ich " and " they " are labeled as pronouns (PRON), while " liebe " and " say " are labeled as verbs (VERB) in the multilingual sentence " Ich liebe Berlin, as they say ".
The following Flair script was used to train this model:
from flair.data import MultiCorpus from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \ UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH from flair.embeddings import StackedEmbeddings, FlairEmbeddings # 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large) corpus = MultiCorpus([ UD_ENGLISH(in_memory=False), UD_GERMAN(in_memory=False), UD_DUTCH(in_memory=False), UD_FRENCH(in_memory=False), UD_ITALIAN(in_memory=False), UD_SPANISH(in_memory=False), UD_POLISH(in_memory=False), UD_CZECH(in_memory=False), UD_DANISH(in_memory=False), UD_SWEDISH(in_memory=False), UD_NORWEGIAN(in_memory=False), UD_FINNISH(in_memory=False), ]) # 2. what tag do we want to predict? tag_type = 'upos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('multi-forward'), # contextual string embeddings, backward FlairEmbeddings('multi-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=False) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/upos-multi', train_with_dev=True, max_epochs=150)
Please cite the following paper when using this model.
@inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }
The Flair issue tracker is available here .