模型:
flair/pos-english-fast
This is the fast part-of-speech tagging model for English that ships with Flair .
F1-Score: 98,10 (Ontonotes)
Predicts fine-grained POS tags:
tag | meaning |
---|---|
ADD | |
AFX | Affix |
CC | Coordinating conjunction |
CD | Cardinal number |
DT | Determiner |
EX | Existential there |
FW | Foreign word |
HYPH | Hyphen |
IN | Preposition or subordinating conjunction |
JJ | Adjective |
JJR | Adjective, comparative |
JJS | Adjective, superlative |
LS | List item marker |
MD | Modal |
NFP | Superfluous punctuation |
NN | Noun, singular or mass |
NNP | Proper noun, singular |
NNPS | Proper noun, plural |
NNS | Noun, plural |
PDT | Predeterminer |
POS | Possessive ending |
PRP | Personal pronoun |
PRP$ | Possessive pronoun |
RB | Adverb |
RBR | Adverb, comparative |
RBS | Adverb, superlative |
RP | Particle |
SYM | Symbol |
TO | to |
UH | Interjection |
VB | Verb, base form |
VBD | Verb, past tense |
VBG | Verb, gerund or present participle |
VBN | Verb, past participle |
VBP | Verb, non-3rd person singular present |
VBZ | Verb, 3rd person singular present |
WDT | Wh-determiner |
WP | Wh-pronoun |
WP$ | Possessive wh-pronoun |
WRB | Wh-adverb |
XX | Unknown |
Based on Flair embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/pos-english-fast") # make example sentence sentence = Sentence("I love Berlin.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('pos'): print(entity)
This yields the following output:
Span [1]: "I" [− Labels: PRP (1.0)] Span [2]: "love" [− Labels: VBP (0.9998)] Span [3]: "Berlin" [− Labels: NNP (0.9999)] Span [4]: "." [− Labels: . (0.9998)]
So, the word " I " is labeled as a pronoun (PRP), " love " is labeled as a verb (VBP) and " Berlin " is labeled as a proper noun (NNP) in the sentence " I love Berlin ".
The following Flair script was used to train this model:
from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'pos' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('news-forward'), # contextual string embeddings, backward FlairEmbeddings('news-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/pos-english-fast', train_with_dev=True, max_epochs=150)
Please cite the following paper when using this model.
@inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} }
The Flair issue tracker is available here .